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Abstract 
 

An effort has been made to examine the dual solutions of boundary layer flow of the Casson fluid over a shrinking 

sheet, with the effects of Joule heating and power-law heat flux. A homogeneous magnetic field is implemented in the system 

along a direction normal to the flow. Appropriate similarity transformations are employed to reformulate the governing equations 

of the present problem into a solvable set and the solution uses the three-stage Lobatto IIIa method in a developed numerical 

bvp4c code in MATLAB. Due to the shrinking surface, some disturbances impact the flow, which has two solutions: one that is 

stable and another that is unstable. Graphical results are shown to assess the velocity and temperature fields. A stability analysis 

is executed to characterize the stable and physically attainable solution. It is perceived that the Casson fluid parameter contributes 

to speed and temperature of the fluid in a time-independent case. Also, it controls the motion as well as the temperature of the 

fluid in the time-dependent case. 
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1. Introduction  
 

 Recently, there non-Newtonian fluids have been 

applied in various areas of engineering, sciences, and 

industrial processes. There is a huge amount of research on 

boundary layer flow of non-Newtonian fluids, with effects of 

both thermal and mass diffusivity becoming recently 

available. Non-Newtonian flows remain a special challenge to 

engineers, physicists, and mathematicians, due to their 

complexity despite the vast significance of these fluid in 

applications. The Casson fluids are a subclass of non-

Newtonian fluids, with particular significance in food 

processing, metallurgy, drilling operations, bio-engineering, 

etc. Some important examples of this fluid type are honey, 

concentrated fruit juices, blood, and tomato sauce. This type 

of fluid has a yield stress and its characteristics dependent on 

both shear stress and yield stress. If the applied shear stress on 

the fluid is lesser than the yield stress, then this type of fluid 

has an infinite viscosity and behaves like a solid. However, it  

behaves like a liquid when the shear stress exceeds the yield 

 
stress. Amilmohamadi, Akram, and Sadeghy (2016), Zaib, 

Bhattacharyya, Uddin, and Shafie (2016), Tamoor, Waqas, 

Khan, Alsaedi, and Hayat (2017), Maraj, Faizan, and Shaiq 

(2019) and Shah, Kumam, and Deebani (2020) have given 

physical significance to the Casson fluid flow in different 

physical areas of different geometries. Oke, Mutuku, Kimathi, 

and Animasaun (2020) have investigated the Casson fluid 

under the action of Coriolis forces, and its importance in 

different fields with rotating non-uniform surfaces. Alghamdi 

et al. (2020) have investigated the boundary-layer flow of 

Casson hybrid nanofluid streaming above an elongating 

surface. They concluded that this fluid model with the hybrid 

nanoparticles is very important for the enhancement of 

thermal conductivity, and this is a key requirement for the 

modern industries. Nandeppanavar, M.C., and Raveendra 

(2021) have examined the simultaneous influence of both 

thermal and mass transfer in Casson fluid flow with variable 

thermal radiation.      

 The flow due to the shrinking surface along with the 

effects of both thermal and mass diffusivity has received a 

great deal of interest in engineering sciences, and industrial 

processes of many areas. Some examples are wire drawing, 

extrusion, metal spinning and hot rolling, etc. Both heat and 

mass transfer over a stretching/shrinking surface occur in 
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annealing and thickening of a copper wire. The boundary-

layer flow over contracting/moving surface was first 

introduced by Crane (1970). The researchers Krishna, Reddy, 

and Makinde (2018), Sarkar et al. (2019), Anuradha and 

Punithavalli (2019), Vaidya et al. (2020), Dey and Chutia 

(2021), Dey and Hazarika (2021) and Dey, Borah, and 

Mahanta (2021), have discussed the boundary layer flow of 

different fluid models due to stretching/shrinking type 

surfaces and their importance in different areas. They have 

also investigated the thermal transfer in the fluid flow for its 

importance in different fields. In the recent times, the Joule 

heating and heat source effect and magnetohydrodynamics on 

this present model are found in important applications in 

different physical areas. Many researchers, Hayat, Shafiq, and 

Alsaedi (2014), Khan, Khan, Irfan, and Alshomrani (2017), 

Saidulu and Lakshmi (2017) and Ibrahim, Kumar, Lorenzini, 

and Lorenzini (2019) have analysed the consequences of Joule 

heating and heat source effects on a variety of surfaces. 

Adnan, Arifin, Bachok, and Ali (2019) have discussed the 

importance of the shrinking surface during the fluid streaming 

above. The effects of the magnetic field during fluid flow of 

this type has many industrial applications in MHD (magneto-

hydrodynamics) pumps and MHD generators etc. Zehra et al. 

(2021) have investigated the Casson nanofluid flow over a 

curved stretching/shrinking channel with homogeneous 

magnetic field. Jamshed et al. (2021) have explored the ideas 

of the magnetized fluid streaming above shrinking/stretching 

surfaces by employing the Casson fluid model.        

Markin (1980) introduced the dual type solutions 

and found that the upper branch, i.e., the time dependent 

solution, is unstable. After that, a huge amount of literature on 

boundary layer flows and their dual solutions has emerged. 

Many researchers, Najib, Bachok, and Arifin (2017), Ahmed, 

Siddique, and Sagheer (2018), Salleh, Bachok, Arifin, Ali, and 

Pop (2018), Dey and Borah (2020) and Mishra, Hussain, Seth, 

and Makinde (2020) have analysed the dual solutions and 

their stability. They have found two types of solutions and 

interpreted that the time independent solution is stable in 

nature and physically achievable. Dey and Borah (2021) have 

investigated the numerical solutions of the two-fold solutions 

of the fluid flow caused due to an elongating surface under the 

action of both thermal and mass transmission by considering 

the second-grade fluid. Dey, Makinde, and Borah (2022) have 

scrutinized the nature of the dual solutions and their 

occurrence during the flow of the fluid under the effects of 

both thermal and mass transfer over a stretching/shrinking 

surface. Dey, Borah, and Khound (2022) have studied the dual 

solutions and their stability for Casson fluid flow over an 

elongating sheet. They found that the first solution, which is 

for the time-independent case, is stable and physically 

tractable. All the above cited literature has studied the impacts 

of a magnetic field on various fluid flows caused by 

stretching/shrinking of surfaces.  

In fluid mechanics, all the flow problems are 

elaborated based on some physical principles of conservation. 

These physical laws give the governing mathematical 

equations that describe the patterns of motion, temperature, as 

well as mass transfer in the fluid. These equations are highly 

non-linear, so only few analytical solutions are known in 

special cases. In this study, we adopted the three-stage 

Lobatto IIIa formula [referring to Shampine, Kierzenka, and 

Reichelt (2000)] for solving the boundary value problems by 

developing a numerical bvp4c code in MATLAB. Many 

researchers such as Dey and Borah (2020, 2021) and Dey, 

Hazarika, Borah (2021) have applied the MATLAB routine 

bvp4c solver scheme in their studies.  

 The objective of this study was to explore the nature 

of dual solutions of the Casson fluid flow due to contracting 

sheet with the Joule heating and heat source. A constant 

magnetic field is applied normal to the flow direction. 

Adopting suitable similarity transformations, a third order 

differential equation corresponding to flow equation and a 

second order equation corresponding to heat transfer equation 

are developed. The numerical calculations and visualization 

are carried out for different flow parameters by using 

MATLAB built-in bvp4c solver. Numerical results have been 

confirmed by comparison against the previous results of Jaber 

(2016) for a certain case, with excellent agreement. The nature 

of dual solutions and their stability for the Casson fluid flow 

due to contracting surface are the novelty of this work. 

 

2. Formulation of the Problem 
 

The following assumptions were made to formulate 

this present problem in terms of mathematical equations. The 

flow diagram of this problem is shown in Figure (1).  
 

 
 

Figure 1. Flow diagram 

 

(i) 2D, time-independent and incompressible flow of 

Casson fluid over a shrinking sheet, 

(ii) a constant magnetic field of strength (B0) is applied in 

the vertical direction over the sheet,  

(iii)  the flow is induced by (a) inertial forces, (b) viscous 

forces, (c) pressure gradient and (d) Lorentz forces,  

(iv) the contracting sheet is characterized by the velocity of 

the fluid u = -cx, where the constant c > 0 represents the 

shrinkage of the sheet at y = 0 and  

(v) in heat transfer, the flow is maintained by both free 

convection and conduction, heat generation, dissipation 

of energy and Joule heating with prescribed wall 

temperature 2 1( )WT x T Bx c 

    

(vi) the constitutive equation of the present fluid model 

[referring to Lund, Omar, Khan, Baleanu, and Nisar 

(2020)] which represents the isotropic and 

incompressible progression of the fluid is stated as: 
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where, the plastic dynamic viscosity of this fluid model is determined by B , ij ije e  is the ( , )thi j  deformation rate of 

the fluid, c the critical value of the deformation rate and the yield stress of the fluid is denoted by Py.  

(vii) One of the most important forces in the present fluid model streaming above a contracting surface is the Lorentz force that 

can be expressed as 

.F q v B
  

   

where, 
0B B y  is the magnetic field that applied in the direction normal to the flow and q the charge and v the velocity 

vector.   

Following boundary layer theory, the foremost equations of this study are: 

 

0,
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x y
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The conditions at the surface are: 

2

00 : , , ;

: 0, 0, .
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y

y u v T T


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                                                                                            (4) 

where, c is a constant and its negative value indicates that there is shrinkage of the sheet at the surface.  

The following similarity transformations are employed to remodel the equations [(1)-(3)].  

1'( ), ( ), , ( ) .
W

T T
u cxf v c f c y

T T
       




    


                                                           (5) 

The equation (1) then is clearly satisfied, and the other two equations get the following forms:  

21
1 ''' '' ' ' 0,f ff f Mf
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                                                                                             (6) 
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                                               (7) 

The boundary condition (4) becomes:   

0 : ( ) , '( ) 1, '( ) 1;

: '( ) 0; ( ) 0.

f s f

f
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                                                                                       (8) 

The flow parameters that are involved in this investigation are defined in the following way: 
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 The following physical quantities are observed in this study that are very important in several physical areas such as 

engineering sciences and industrial processes. The skin friction coefficient (Cf) and the Nusselt number (rate of heat transfer) (Nu) 

are defined in the following way:  

2

0 0

1
1

& .
( )

f

ww y y

u x T
C Nu

y T T yu




  

 
 

     
     

     
                                                          (9) 
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3. Flow Stability 
  

To characterize the more stable and physically attainable solution, the time dependent governing equations are needed. 

So, we have considered the unsteady form of governing equations (2) and (3) by adding the terms &
u T

t t

 

 
in (2) and (3) 

respectively. To solve the unsteady form of governing equations, the following new similarity transformations are employed: 

1'( , ), ( , ), , ( , ) & .
W

T T
u cxf v c f c y ct

T T
           




     


   (11) 

where t  is the time. After applying equations (11) in the unsteady governing equations, we have achieved the following set of 

equations: 
23 2 2
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The pertinent boundary conditions are: 
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Following Markin (1980) and Weidman and Awaludin (2016), the following perturbed (separation of variables) 

equations are considered, which helps to simplify the equations (12) and (13) and transform them into linearized form. 
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where, 
0 0&f  are the solutions of the time free equations and F&G are small relative to steady flow solutions; and λ is an 

unknown eigenvalue parameter. To obtain the steady flow solutions, we have to set 0  , which give 
0 0&F F G G  . 

Therefore, we have perceived the following set of linearized eigenvalue problems. 
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and the conditions at the surface become 

0 0 0 0 0'(0) 0, (0) 0, '(0) 0; '( ) 0, ( ) 0.F F G F G                                                                  (19) 

Solving these equations, we get an infinite set of eigenvalues. Among these eigenvalues, the positive smallest 

eigenvalue represents an initial decay of disturbances to the flow and hence the flow will be stable by its nature. If the least 

eigenvalue is found to be negative, then an initial growth of disturbances happens in the flow, and hence the flow will be 

unstable. To evaluate the fixed eigenvalues, we have relaxed the boundary condition
0 '( ) 0F   to the new boundary condition 

0 ''(0) 1F  [following Harish, Ingham, and Pop (2009) and Weidman and Awaludin (2016)].  

 

4. Discussion of the Results 
 

 The “MATLAB built-in bvp4c solver” was adopted to work out this problem [following Shampine, Kierzenka, and 

Reichelt (2000), Dey and Hazarika (2020) and Dey and Chutia (2020)]. The dimensionless Prandtl number (Pr) was fixed to 

0.72  throughout this investigation, which physically signifies higher thermal conductivity materials-air (Pr = 0.7 < 1, thermal 

diffusivity is greater than momentum diffusivity) [referring Salleh, Bachok, Arifin, Ali, and Pop (2010)]. The visualization of 

flow behaviours is done with the help of graphs for different values of flow parameters. Special highlights are given for the 

Casson fluid parameter (β) as its value    approaches the Newtonian fluid; along with heat source parameter (H) and Joule 

heating parameter (J).  
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4.1 Verification of the results  
 

To validate our results, we have compared our 

numerical values of the shear stress at the surface for the 

steady Newtonian fluid ( )   in the case of stretching 

sheet with the pioneer work of Jaber (2016). Table (1) shows a 

very good conformity of our results. This concordance gives 

confidence also to the other results.     

The numerical values of smallest eigenvalue are 

given in Table 2. It is seen that the least eigenvalues for the 

steady flow solution are positive. The initial disturbances in 

the flow decay, consequently this being a stable steady flow 

solution. In the unsteady solutions, the smallest eigenvalues 

are found to be negative, allowing disturbances in the flow to 

grow and make it unstable.  

Figures 2 and 3 illustrate the motion and 

temperature of the fluid for various values of the Casson fluid 

parameter (β). From Figure 2, it is perceived that increasing β 

accelerates the motion of the fluid in both the time-

independent and the time-dependent cases. Generally, a larger 

β decelerates the motion of the fluid because it raises the 

plastic dynamic viscosity, but the opposite behaviour is 

observed for the flow here, and this happens only because of 

the special geometry (shrinking surface). From Figure 3, it is 

noted that the temperature of the fluid decreases with β. This 

can be physically understood as higher values of β enhance 

the resistance of the fluid and reduce the effects of yield stress 

on the fluid, and hence the temperature pattern gets slower in 

both cases. Further, it can be concluded that in the time-

dependent case, the velocity and temperature of the fluid 

converge to its free stream region more quickly than in the 

time-independent case. Due to the magnetic field in the 

system, the speed of the motion in both the cases (steady and 

unsteady) accelerates [shown in Figure 4]. It can be physically 

reasoned that increasing the magnetic parameter reduces the 

effects of viscosity of the fluid at the surface, making the 

Lorentz force dominate, and hence speed of the fluid 

increases.  From  Figure 5,  it is seen that both of the solutions  
 

Table 2. Numerical values of smallest eigenvalues for a range of the 
suction parameter (s) when Pr = 0.72, Ec = 3, J = 1, H = 1, 

M = 2 & β = 0.2 

 

 

s  

Smallest eigenvalue  

       Steady solution  Unsteady solution  

   

2.5  2.5000  -2.3380  

2.6  2.6000  -2.1521  

2.7  2.7000  -2.7426  
   

       
 

Figure 2. Impact of β on velocity distribution when Pr = 0.72,         

Ec = 3, J = 1, H = 1, M = 0.2 & s = 2.23 

 

 
 

Figure 3. Impact of β on temperature field when Pr = 0.72, Ec = 3,    

J = 1, H = 1, M = 0.2 & s = 2.23 

 

 
 

Figure 4. Impact of M on velocity field when Pr = 0.72, Ec = 3,        
J = 1, H = 1, M = 0.2, s = 2.23, & β = 0.2 

  
Table 1. Numerical values of negative magnitude of skin-friction coefficient (-Cf) for various values of magnetic parameter (M) when Pr = 

0.72, Ec = 3, J = 1, H = 1 & s = 1 in the case of Newtonian fluid and stretching sheet 

 

M Jaber (2016) result (shooting technique solutions) 
Present results (bvp4c solution) 

Steady solution Unsteady solution 

    

1.0 2.00007 2.0009 3.0311 

3.0 2.56155 2.5616 3.1138 

5.0 3.0 3.0 3.5311 
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Figure 5. Impact of M on temperature field when Pr = 0.72, Ec = 3,    

J = 1, H = 1, M = 0.2, s = 2.23, & β = 0.2 

 

(steady and unsteady) of temperature distributions in the fluid 

increase near the surface of the sheet with M. It can be 

physically justified that enlarging M increases the magnetic 

force as well as friction of the fluid, and hence the temperature 

in the fluid in both cases increases. Also, maximum variation 

of the temperature field in the fluid is seen in the region 0 < η 

< 0.5. Figure 6 is portrayed to investigate the nature of speed 

of the fluid due to effects of the suction parameter (s > 0). 

Increasing s increases the speed of the fluid in both the cases. 

Again, it is observed that the speed of the fluid during steady 

case is completely negative for various values of s. From this 

figure, it is also perceived that the speed of the fluid in time-

dependent case oscillates in the region 2 < η < 10 with 

increasing values of s. This happens only because of the 

additional fluid suction by the system and the shrinkage affect 

in opposite directions of the flow. 

The consequences of heat source and Joule heating 

parameters on temperature distribution are plotted in Figures 7 

and 8. From Figure 7, it is perceived that the temperature of 

the fluid decreases with H in both the time-independent and 

the time-dependent solutions. Generally, increasing H 

generates additional heat in the system and hence the 

temperature in the fluid tends to increase. However, the 

opposite is seen in this study because of the considered 

geometry, with shrinkage opposing the direction of flow. 

Also, it is seen that maximum temperature of the fluid is 

found in the vicinity of the surface and then gradually on 

going to its free stream region both the solutions become 

similar. The temperature change of the fluid during both 

steady and unsteady cases accelerates with more Joule heating 

(J). It is also noticed that the thermal boundary layer width in 

the steady solution is thinner than in the unsteady (time-

dependent) solution. All the cases satisfy the far field 

boundary conditions asymptotically. Also, we have seen that 

both of the solutions exist within a certain region of the 

similarity variables η. Again, the steady solution is in the 

vicinity of the surface and converges to its free stream region 

quicker than the unsteady solutions, so the steady solution is 

more realizable than the unsteady solution. 

 

5. Conclusions 
 

In this study, we have investigated the two-fold 

solutions of the thermally stratified Casson fluid streaming 

above a contracting surface under the influence of magnetic 

      
 

Figure 6. Impact of s on velocity field when Pr = 0.72, Ec = 3, J = 1, 

H = 1, M = 0.2, & β = 0.2 
 

 
 

Figure 7. Impact of H on temperature field when Pr = 0.72, Ec = 3,  
J = 1, s = 2.23, M = 0.2, & β = 0.2 

 

 
 

Figure 8. Impact of J on temperature field when Pr = 0.72, Ec = 3,  
H = 1, s = 2.23, M = 0.2, & β = 0.2 

 
field. The pertinent flow parameters discussed in the result 

section of this study have multiple applications in diverse 

physical areas. Again, the considered fluid model is one of the 

most important in the recent research trends. The scientists 

and industrialists may use this fluid model under the influence 

of different factors that interact with flows, such as magnetic 

field, Joule heating, heat source, and suction/injection for 

achieving more benefits. The following are the key 

observations made in this study: 

 All the profiles satisfy the far-field boundary 

conditions asymptotically and dual type 
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solutions exist in a certain region of the 

similarity variables η. 

 From the stability point of view, the steady 

flow solutions are stable and the unsteady flow 

solutions are unstable.  

 The Casson fluid parameter has major 

significance to development of the speed of the 

fluid, as well as to control of the temperature of 

the fluid, which can save the system from 

damage.   

 The magnetic field contributed to the motion of 

the fluid in both cases (time-independent and 

time-dependent). Again, increasing the 

magnetic field develops the temperature field 

of the fluid. 

 The Joule heating contributes to the entire 

temperature field of the system. 

 We can control the temperature of the fluid by 

utilizing the heat source.   

The suction of the fluid in the system affects the motion of the 

fluid in both steady and unsteady cases. 

 

Nomenclature 
 

C  constant 

B  constant 

f ' (η)  dimensionless velocity 

Ec  Eckert number  

H  heat source parameter 

Q*  heat generation parameter 

J  Joule heating parameter 

B0  magnetic field (T)  

M  Magnetic parameter  

Nu  Nusselt number 

Pr  Prandtl number 

u  rate of displacement along x-directions 

(m/s) 

v  rate of displacement along y-directions 

(m/s) 

CP specific heat at constant pressure 

V0  suction/injection parameter 

s  suction/injection parameter 

Cf  skin friction coefficient 

T  temperature of the fluid (K)  

t  time variable (s)  

k  thermal conductivity (m2/s) 

Py  yield stress of the fluid (MPa) 

Greek symbols: 

β Casson fluid parameter 

ρ density (kg/m3)  

τ dimensionless time variable 

θ(η)  dimensionless temperature field 

σ electric density of the fluid (s/m) 

υ kinematic viscosity (m2/s) 

μβ  plastic dynamic viscosity (pa.s) 

η similarity variable 

ψ stream function 

λ  unknown eigen-value parameter 

Suffix: 

ω at wall 

∞ at free stream region”  
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